Aryl amination using ligand-free Ni(II) salts and photoredox catalysis.

نویسندگان

  • Emily B Corcoran
  • Michael T Pirnot
  • Shishi Lin
  • Spencer D Dreher
  • Daniel A DiRocco
  • Ian W Davies
  • Stephen L Buchwald
  • David W C MacMillan
چکیده

Over the past two decades, there have been major developments in transition metal-catalyzed aminations of aryl halides to form anilines, a common structure found in drug agents, natural product isolates, and fine chemicals. Many of these approaches have enabled highly efficient and selective coupling through the design of specialized ligands, which facilitate reductive elimination from a destabilized metal center. We postulated that a general and complementary method for carbon-nitrogen bond formation could be developed through the destabilization of a metal amido complex via photoredox catalysis, thus providing an alternative approach to the use of structurally complex ligand systems. Here, we report the development of a distinct mechanistic paradigm for aryl amination using ligand-free nickel(II) salts, in which facile reductive elimination from the nickel metal center is induced via a photoredox-catalyzed electron-transfer event.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metal-free carbonylations by photoredox catalysis.

The synthesis of benzoates from aryl electrophiles and carbon monoxide is a prime example of a transition-metal-catalyzed carbonylation reaction which is widely applied in research and industrial processes. Such reactions proceed in the presence of Pd or Ni catalysts, suitable ligands, and stoichiometric bases. We have developed an alternative procedure that is free of any metal, ligand, and ba...

متن کامل

Nickel-catalyzed triarylamine synthesis: synthetic and mechanistic aspects.

An improved protocol was described for the amination of chloroarenes with diarylamines under NiCl2(PCy3)2 catalysis in the presence of a Grignard reagent as base. This method fully suits bromo-/iodoarene substrates as well, and even is expanded to certain aryl tosylates. A preliminary investigation into the mechanism suggests that this amination reaction might proceed through Ni(I) and Ni(III) ...

متن کامل

Photoredox Cross-Coupling: Ir/Ni Dual Catalysis for the Synthesis of Benzylic Ethers

Single-electron transmetalation has emerged as an enabling paradigm for the cross-coupling of Csp(3) hybridized organotrifluoroborates. Cross-coupling of α-alkoxymethyltrifluoroborates with aryl and heteroaryl bromides has been demonstrated by employing dual catalysis with a combination of an iridium photoredox catalyst and a Ni cross-coupling catalyst. The resulting method enables the alkoxyme...

متن کامل

Cooperative Light‐Activated Iodine and Photoredox Catalysis for the Amination of Csp3 −H Bonds

An unprecedented method that makes use of the cooperative interplay between molecular iodine and photoredox catalysis has been developed for dual light-activated intramolecular benzylic C-H amination. Iodine serves as the catalyst for the formation of a new C-N bond by activating a remote Csp3 -H bond (1,5-HAT process) under visible-light irradiation while the organic photoredox catalyst TPT ef...

متن کامل

Dual Visible Light Photoredox and Gold-Catalyzed Arylative Ring Expansion

A combination of visible light photocatalysis and gold catalysis is applied to a ring expansion-oxidative arylation reaction. The reaction provides an entry into functionalized cyclic ketones from the coupling reaction of alkenyl and allenyl cycloalkanols with aryl diazonium salts. A mechanism involving generation of an electrophilic gold(III)-aryl intermediate is proposed on the basis of mecha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 353 6296  شماره 

صفحات  -

تاریخ انتشار 2016